Part Number Hot Search : 
CAPA110 1H471 160AT 2SD2687S 1M35V10 XF0013W6 LM39100 TC401
Product Description
Full Text Search
 

To Download FAN7031MTFX Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ?2004 fairchild semiconductor corporation www.fairchildsemi.com rev. 1.0.3 features ? 1.85w rms and 2.45w rms power per each channel into 4 ? load with less than 1% and 10% thd+n, respectively ? selectable gain via internal gain control circuit which eliminates external gain se tting resistors : 6db, 10.3db, 15.6db, 21.6db(select) ? low quiescent current : typical 5.5ma@5v ? low shutdown current : typical 0.04 a@5v ? fully differential input, which immunes the common mode noise ? stereo headphone drive ? active low shutdown logic ? guaranteed stability under no load condition ? thermally enhanced su rface-mount 20tssop-ep package description the fan7031 is a dual fully differ ential power amplifier in a 20-pin tssop-ep thermally enhanced package. when delivering 1.85w of continuous rms power into 4 ? speaker at 5v supply, the fan7031 has less than 1% of thd+n over the entire audible frequency range, 20hz to 20khz. to save power consumption in the portable applications, the fan7031 provides shutdown func tion. setting the shutdown pin to ground level, the fan7031 falls into shutdown mode and consumes less than 4 a over all supply voltage range, 2.7v to 5.5v. two gain setti ng pins(g0 and g1) control the gain of the fan7031. the gain is selectable to 6db, 10db, 15.6db and 21.6db. the f an7031 provides the single- ended(se) operation by setting se/btl pin to above v dd /2. using se/btl pin and a mechanical switch which provides at the headphone jack, se m ode and btl mode are automat- ically determined. additional components such as resistors for gain setting and bootstrap capacitors are not needed, making the fan7031 well suited for portable sound systems and other hand-held sound equi pment. target applications include notebook and desktop co mputers and portable audio equipment. 20-tssop-ep 1 fan7031 2w stereo power amplifier with four selectable gain setting and headphone drive
fan7031 2 internal block diagram gain control se/btl control on/off control tsd vdd/2 current source control bias bypass rout+ rout- rin- rin+ g0 sd se/btl lin- lin+ lout+ lout- g1
fan7031 3 pin assignments pin description * all gnd is internally tied together. ** for the best performance, vdd, pvdd1 and pvdd2 must be the same voltage level(strongly recommend). pin no symbol i/o decription 1* gnd - ground 2 g0 i gain selection input(msb) 3 g1 i gain selection input(lsb) 4 lout+ o left channel (+) output 5 lin- i left channel (-) input 6** pvdd2 i left channel power supply voltage 7 rin+ i right channel (+) input 8 lout- o left ch annel (-) output 9 lin+ i left channel (+) input 10 bypass o bypass capacitor connect 11* gnd - ground 12 se/btl i single-ended & btl selection: gnd se/btl vdd/2:btl mode vdd/2 < se/btl vdd: se mode 13 nc - no connection 14 rout- o right ch annel (-) output 15** pvdd1 i right channel power supply voltage 16** vdd i power supply voltage 17 rin- i right channel (-) input 18 rout+ o right channel (+) output 19 sd i shutdown logic low sd=vdd: chip enable sd=gnd: chip shutdown 20* gnd - ground gnd g0 g1 lout+ lin- pvdd2 rin+ lout- lin+ bypass gnd sd rout+ rin- vdd pvdd1 rout- nc se/btl gnd heat sink 1 10 11 20
fan7031 4 absolute maximum ratings note1 : rthja was derived using a jedec multi layer and single layer. operating ratings parameter symbol value unit remark maximum supply vo ltage vddmax 6.0v v power dissipation p d internally limited w see derating curve operating temperature t opg -40 ~ +85 c storage temperature t stg -65 ~ +150 c junction temperature t j 150 c thermal resistance (junction to ambient) rthja 30.4 c/w multi layer board 112.5 single layer board esd rating (human body model) 2000 v parameter symbol min typ max unit power supply voltage v dd 2.7 - 5.5 v
fan7031 5 electrical characteristics (v dd = 5.0v, ta = 25 c, unless otherwise specified) electrical characteristics (continued) (v dd = 3.3 v, ta = 25 c, unless otherwise specified) electrical characteristics (continued) (v dd = 2.7 v, ta = 25 c, unless otherwise specified) parameter symbol conditions min. typ. max. unit offset voltage v off rl=4 ?, av=6db -25 - 25 mv supply current i dd no input, no load - 5.5 10 ma shutdown current i sd sd = gnd - 0.04 4 a output power p o thd+n =1%, rl = 4 ? , f = 1khz - 1.85 - w thd+n =10%, rl = 4 ? , f = 1khz - 2.45 - w btl mode gain av se/btl =gnd, g0=gnd, g1=gnd, vin=4vpp, no load -6-db se/btl =gnd, g0=gnd, g1=vdd, vin=2.44vpp, no load - 10.3 - db se/btl =gnd, g0=vdd, g1=gnd, vin=1.34vpp, no load - 15.6 - db se/btl =gnd, g0=vdd, g1=vdd, vin=0.66vpp, no load - 21.3 - db se mode gain se/btl =vdd, vin=2.44vpp, no load -4.3- db total harmonic distortion + noise thd+n p o = 1w, rl=4 ? , f = 20khz - 0.2 0.75 % power supply rejection ratio psrr c byp = 0.47 f, r l = 4 ? , btl mode, ? vdd=500mvpp, f = 1khz 40 70 - db parameter symbol conditions min. typ. max. unit offset voltage v off rl=4 ?, av=6db -25 - 25 mv supply current i dd no input, no load - 4.3 8 ma shutdown current i sd sd = gnd - 0.08 4 a output power p o thd+n =10%, rl = 4 ?, f=1khz - 1.02 - w total harmonic distortion + noise thd+n p o = 0.5w, rl = 4 ?, f = 20khz - 0.2 0.75 % power supply rejection ratio psrr c byp = 0.47 f, r l = 4 ? , btl mode, ? vdd=330mvpp, f = 1khz 40 70 - db parameter symbol conditions min. typ. max. unit offset voltage v off rl=4 ?, av=6db -25 - 25 mv supply current i dd no input, no load - 4.1 7 ma shutdown current i sd sd = gnd - 0.04 4 a output power p o thd+n =10%, rl = 4 ?, f=1khz - 0.54 - w total harmonic distortion + noise thd+n p o = 0.25w, rl = 4 ?, f = 20khz - 0.2 0.75 % power supply rejection ratio psrr c byp = 0.47 f, r l = 4 ? , btl mode, ? vdd=270mvpp, f = 1khz -65-db
fan7031 6 performance characteristics figure 1. thd+n vs. output power f igure 2. thd+n vs. output power figure 5. thd+n vs. output power figure 4. thd+n vs. output power figure 6. thd+n vs. output power 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 thd [%] 10m 3 20m 50m 100m 200m 500m 1 2 output power [w] btl mode vdd=5v rl=4ohm av=6db 20khz 1khz 20hz 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 thd [%] 10m 3 20m 50m 100m 200m 500m 1 2 output power [w] btl mode vdd=5v rl=4ohm av=6db 20khz 1khz 20hz 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 thd [%] 10m 3 20m 50m 100m 200m 500m 1 2 output power [w] btl mode vdd=5v rl=8ohm av=6db 1khz 20hz 20khz 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 thd [%] 10m 3 20m 50m 100m 200m 500m 1 2 output power [w] btl mode vdd=5v rl=8ohm av=6db 1khz 20hz 20khz 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 thd [%] 10m 2 20m 50m 100m 200m 500m 1 output power [w] btl mode vdd=3.3v rl=4ohm av=6db 20khz 1khz 20hz 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 thd [%] 10m 2 20m 50m 100m 200m 500m 1 output power [w] btl mode vdd=3.3v rl=4ohm av=6db 20khz 1khz 20hz 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 thd [%] 10m 1 20m 50m 100m 200m 500m output power [w] btl mode vdd=3.3v rl=8ohm av=6db 20khz 1khz 20hz 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 thd [%] 10m 1 20m 50m 100m 200m 500m output power [w] btl mode vdd=3.3v rl=8ohm av=6db 20khz 1khz 20hz 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 thd[%] 10m 1 20m 50m 100m 200m 500m output power [w] btl mode vdd=2.7v rl=4ohm av=6db 20khz 1khz 20hz 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 thd[%] 10m 1 20m 50m 100m 200m 500m output power [w] btl mode vdd=2.7v rl=4ohm av=6db 20khz 1khz 20hz 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 thd [%] 10m 1 20m 50m 100m 200m 500m output power [w] btl mode vdd=2.7v rl=8ohm av=6db 20khz 1khz 20hz 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 thd [%] 10m 1 20m 50m 100m 200m 500m output power [w] btl mode vdd=2.7v rl=8ohm av=6db 20khz 1khz 20hz figure 3. thd+n vs. output power
fan7031 7 performance characteristics (continued) figure 7. thd+n vs. output power figure 8. thd+n vs. gain figure 9. thd+n vs. gain figure 10. thd+n vs. gain figure 11. thd+n vs. frequency f igure 12. thd+n vs. frequency 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 thd [%] 100u 200m 200u 500u 1m 2m 5m 10m 20m 50m 100m output power [w] single-ended mode vdd=5v rl=32ohm av=4.3db 1khz 20khz 20hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 thd [%] 100u 200m 200u 500u 1m 2m 5m 10m 20m 50m 100m output power [w] single-ended mode vdd=5v rl=32ohm av=4.3db 1khz 20khz 20hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 thd [%] 10m 3 20m 50m 100m 200m 500m 1 2 output power [w] btl mode vdd=5v rl=4ohm 6db 10.3db 15.6db 21.6db 20khz 1khz 6db 10.3db 15.6db 21.6db 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 thd [%] 10m 3 20m 50m 100m 200m 500m 1 2 output power [w] 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 thd [%] 10m 3 20m 50m 100m 200m 500m 1 2 output power [w] btl mode vdd=5v rl=4ohm 6db 10.3db 15.6db 21.6db 20khz 1khz 6db 10.3db 15.6db 21.6db 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 thd [%] 10m 2 20m 50m 100m 200m 500m 1 output power [w] btl mode vdd=3.3v rl=4ohm 6db 10.3db 15.6db 21.6db 20khz 1khz 6db 10.3db 15.6db 21.6db 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 thd [%] 10m 2 20m 50m 100m 200m 500m 1 output power [w] 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 thd [%] 10m 2 20m 50m 100m 200m 500m 1 output power [w] btl mode vdd=3.3v rl=4ohm 6db 10.3db 15.6db 21.6db 20khz 1khz 6db 10.3db 15.6db 21.6db 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 thd [%] 10m 1 20m 50m 100m 200m 500m output power [w] btl mode vdd=2.7v rl=4ohm 6db 10.3db 15.6db 21.6db 20khz 1khz 6db 10.3db 15.6db 21.6db 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 thd [%] 10m 1 20m 50m 100m 200m 500m output power [w] 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 thd [%] 10m 1 20m 50m 100m 200m 500m output power [w] btl mode vdd=2.7v rl=4ohm 6db 10.3db 15.6db 21.6db 20khz 1khz 6db 10.3db 15.6db 21.6db 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 thd [%] 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] vdd=5v output power =1w rl=4ohm 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 thd [%] 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] vdd=5v output power =1w rl=4ohm 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 thd [%] 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] vdd=3.3v output power = 500mw rl=4ohm 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 thd [%] 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] vdd=3.3v output power = 500mw rl=4ohm
fan7031 8 performance characteristics (continued) figure 13. thd+n vs. frequency figure 15. crosstalk vs. frequency f igure 16. crosstal k vs. frequency figure 17. crosstalk vs. frequenc y figure 18. psrr vs. frequency figure 14. thd+n vs. frequency 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 thd [%] 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] vdd=2.7v output power = 250mw rl=4ohm 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 thd [%] 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] vdd=2.7v output power = 250mw rl=4ohm 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 thd [%] 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] single-ended mode vdd=5v output power = 50mw rl=32ohm 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 thd [%] 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] single-ended mode vdd=5v output power = 50mw rl=32ohm -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 crosstalk [db] 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] right-to-left left-to-right vdd=5v output power = 1w rl=4ohm -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 crosstalk [db] 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] right-to-left left-to-right vdd=5v output power = 1w rl=4ohm -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] vdd=5v output power = 1w rl=8ohm left-to-right right-to-left crosstalk [db] -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] vdd=5v output power = 1w rl=8ohm left-to-right right-to-left crosstalk [db] -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] single-ended mode vdd=5v output power = 50mw rl=32ohm crosstalk [db] right-to-left left-to-right -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] single-ended mode vdd=5v output power = 50mw rl=32ohm crosstalk [db] right-to-left left-to-right -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] psrr [db] vdd=5v+/-5% rl=4ohm -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] psrr [db] vdd=5v+/-5% rl=4ohm
fan7031 9 performance characteristics (continued) figure 19. psrr vs. frequency figure 20. psrr vs. frequency figure 21. psrr vs. frequency figure 24. psrr vs. bybass capacitor figure 22. psrr vs. frequency figure 23. psrr vs. frequency -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] vdd=3.3v+/-5% rl=4ohm psrr [db] -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] vdd=3.3v+/-5% rl=4ohm psrr [db] -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 psrr [db] 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] vdd=2.7v+/-5% rl=4ohm -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 psrr [db] 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] vdd=2.7v+/-5% rl=4ohm -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] single-ended mode vdd=5v+/-5% rl=32ohm cbyp=0.47uf psrr [db] -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] single-ended mode vdd=5v+/-5% rl=32ohm cbyp=0.47uf psrr [db] -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] single-ended mode vdd=3.3v+/-5% rl=32ohm cbyp=0.47uf psrr [db] -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] single-ended mode vdd=3.3v+/-5% rl=32ohm cbyp=0.47uf psrr [db] -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 psrr [db] 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] single-ended mode vdd=2.7v+/-5% rl=32ohm cbyp=0.47uf -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 psrr [db] 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] single-ended mode vdd=2.7v+/-5% rl=32ohm cbyp=0.47uf -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 psrr [db] 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] single-ended mode vdd=5v+/-5% rl=32ohm 4.7 f 10 f 1 f 0.47 f 0.1 f -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 psrr [db] 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 psrr [db] 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] single-ended mode vdd=5v+/-5% rl=32ohm 4.7 f 10 f 1 f 0.47 f 0.1 f
fan7031 10 performance characteristics (continued) figure 25. btl mode gain vs. frequency figure 26. btl mode gain vs. frequency figure 27. btl mode gain vs. frequenc y figure 28. idd vs. supply voltage figure 29. shutdown cu rrent vs. supply volt age figure 30. idd vs. shutdown pin voltage 012345 0.0 1.0m 2.0m 3.0m 4.0m 5.0m 6.0m idd current [a] supply voltage [v] 012345 0.0 1.0m 2.0m 3.0m 4.0m 5.0m 6.0m idd current [a] supply voltage [v] -1012345678 0.0 5.0n 10.0n 15.0n 20.0n 25.0n shutdown current [a] supply voltage [v] -1012345678 0.0 5.0n 10.0n 15.0n 20.0n 25.0n shutdown current [a] supply voltage [v] 012345 0.0 2.0m 4.0m 6.0m 8.0m current [a] shutdown pin voltage [v] vdd=5v vdd=3.3v vdd=2.7v 012345 0.0 2.0m 4.0m 6.0m 8.0m current [a] shutdown pin voltage [v] vdd=5v vdd=3.3v vdd=2.7v +0 +20 +5 +10 +15 gain [db] 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] vdd=5v no load cin=0.47uf g0=gnd, g1=gnd g0=gnd, g1=vdd g0=vdd, g1=gnd g0=vdd, g1=vdd +0 +20 +5 +10 +15 gain [db] 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] vdd=5v no load cin=0.47uf g0=gnd, g1=gnd g0=gnd, g1=vdd g0=vdd, g1=gnd g0=vdd, g1=vdd +0 +20 +5 +10 +15 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] gain [db] g0=gnd, g1=gnd g0=gnd, g1=vdd g0=vdd, g1=gnd g0=vdd, g1=vdd vdd=3.3v no load cin=0.47uf +0 +20 +5 +10 +15 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] gain [db] g0=gnd, g1=gnd g0=gnd, g1=vdd g0=vdd, g1=gnd g0=vdd, g1=vdd vdd=3.3v no load cin=0.47uf +0 +20 +5 +10 +15 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] gain [db] g0=gnd, g1=gnd g0=gnd, g1=vdd g0=vdd, g1=gnd g0=vdd, g1=vdd vdd=2.7v no load cin=0.47uf +0 +20 +5 +10 +15 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] gain [db] g0=gnd, g1=gnd g0=gnd, g1=vdd g0=vdd, g1=gnd g0=vdd, g1=vdd vdd=2.7v no load cin=0.47uf
fan7031 11 performance characteristics (continued) 012345 3.0m 3.5m 4.0m 4.5m 5.0m 5.5m idd current [a] se/btl pin voltage [v] btl mode single-ended mode vdd=5v 012345 3.0m 3.5m 4.0m 4.5m 5.0m 5.5m idd current [a] se/btl pin voltage [v] btl mode single-ended mode vdd=5v figure 31. idd vs. se/btl pin voltage figure 34. power dissipa tion vs. output power figure 36. output powe r vs. supply voltage -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 2.5m 3.0m 3.5m 4.0m 4.5m idd current [a] se/btl pin voltage [v] btl mode single-ended mode vdd=3.3v -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 2.5m 3.0m 3.5m 4.0m 4.5m idd current [a] se/btl pin voltage [v] btl mode single-ended mode vdd=3.3v figure 32. idd vs. se/btl pin voltage 0.0 0.5 1.0 1.5 2.0 2.5 3.0 2.5m 3.0m 3.5m 4.0m 4.5m idd current [a] se/btl pin voltage [v] btl mode single-ended mode vdd=2.7v 0.0 0.5 1.0 1.5 2.0 2.5 3.0 2.5m 3.0m 3.5m 4.0m 4.5m idd current [a] se/btl pin voltage [v] btl mode single-ended mode vdd=2.7v figure 33. idd vs. se/btl pin voltage 0.0 0.5 1.0 1.5 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 power dissipation [w] output power [w] thd less than 1% rl=8ohm f=1khz vdd=5v vdd=3.3v vdd=2.7v 0.0 0.5 1.0 1.5 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 power dissipation [w] output power [w] thd less than 1% rl=8ohm f=1khz vdd=5v vdd=3.3v vdd=2.7v 0.00.51.01.52.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 power dissipation [w] output power [w] thd less than 1% rl=4ohm f=1khz vdd=5v vdd=3.3v vdd=2.7v 0.00.51.01.52.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 power dissipation [w] output power [w] thd less than 1% rl=4ohm f=1khz vdd=5v vdd=3.3v vdd=2.7v figure 35. power dissipation vs. output power 2.5 3.0 3.5 4.0 4.5 5.0 5.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 output power [w] supply voltage [v] 10% thd+n 1% thd+n btl mode f=1khz rl=4ohm 2.5 3.0 3.5 4.0 4.5 5.0 5.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 output power [w] supply voltage [v] 10% thd+n 1% thd+n btl mode f=1khz rl=4ohm
fan7031 12 performance characteristics (continued) figure 37. output power vs. supply voltage figure 40. output powe r vs. load resistance figure 42. output powe r vs. load resistance figure 38. output powe r vs. load resistance figure 39. output powe r vs. load resistance figure 41. output power vs. load resistance 2.53.03.54.04.55.05.5 0.0 0.5 1.0 1.5 2.0 output power [w] supply voltage [v] 10% thd+n 1% thd+n btl mode f=1khz rl=8ohm 2.53.03.54.04.55.05.5 0.0 0.5 1.0 1.5 2.0 output power [w] supply voltage [v] 10% thd+n 1% thd+n btl mode f=1khz rl=8ohm 0 8 16 24 32 40 48 56 64 0.0 0.5 1.0 1.5 2.0 2.5 output power [w] rl-load resistance [ ? ] 10% thd+n 1% thd+n btl mode vdd=5v f=1khz 0 8 16 24 32 40 48 56 64 0.0 0.5 1.0 1.5 2.0 2.5 output power [w] rl-load resistance [ ? ] 0 8 16 24 32 40 48 56 64 0.0 0.5 1.0 1.5 2.0 2.5 output power [w] rl-load resistance [ ? ] 10% thd+n 1% thd+n btl mode vdd=5v f=1khz 0 8 16 24 32 40 48 56 64 0.0 0.2 0.4 0.6 0.8 1.0 1.2 output power [w] rl-load resistance [ ? ] btl mode vdd=3.3v f=1khz 10% thd+n 1% thd+n 0 8 16 24 32 40 48 56 64 0.0 0.2 0.4 0.6 0.8 1.0 1.2 output power [w] rl-load resistance [ ? ] 0 8 16 24 32 40 48 56 64 0.0 0.2 0.4 0.6 0.8 1.0 1.2 output power [w] rl-load resistance [ ? ] btl mode vdd=3.3v f=1khz 10% thd+n 1% thd+n rl-load resistance [ ? ] 0 8 16 24 32 40 48 56 64 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 output power [w] btl mode vdd=2.7v f=1khz 10% thd+n 1% thd+n rl-load resistance [ ? ] 0 8 16 24 32 40 48 56 64 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 output power [w] rl-load resistance [ ? ] 0 8 16 24 32 40 48 56 64 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 output power [w] btl mode vdd=2.7v f=1khz 10% thd+n 1% thd+n 0 8 16 24 32 40 48 56 64 0.0 100.0m 200.0m 300.0m 400.0m 500.0m 600.0m 700.0m 800.0m output power [w] rl-load resistance [ ? ] single-ended mode vdd=5v f=1khz 10% thd+n 1% thd+n 0 8 16 24 32 40 48 56 64 0.0 100.0m 200.0m 300.0m 400.0m 500.0m 600.0m 700.0m 800.0m output power [w] rl-load resistance [ ? ] 0 8 16 24 32 40 48 56 64 0.0 100.0m 200.0m 300.0m 400.0m 500.0m 600.0m 700.0m 800.0m output power [w] rl-load resistance [ ? ] single-ended mode vdd=5v f=1khz 10% thd+n 1% thd+n 0 8 16 24 32 40 48 56 64 0.00 0.05 0.10 0.15 0.20 0.25 0.30 output power [w] rl-load resistance [ ? ] single-ended mode vdd=3.3v f=1khz 10% thd+n 1% thd+n 0 8 16 24 32 40 48 56 64 0.00 0.05 0.10 0.15 0.20 0.25 0.30 output power [w] rl-load resistance [ ? ] 0 8 16 24 32 40 48 56 64 0.00 0.05 0.10 0.15 0.20 0.25 0.30 output power [w] rl-load resistance [ ? ] single-ended mode vdd=3.3v f=1khz 10% thd+n 1% thd+n
fan7031 13 performance characteristics (continued) figure 43. output power vs. load resistance figure 44. power derating curve 0 8 16 24 32 40 48 56 64 0.00 0.05 0.10 0.15 0.20 output power [w] rl-load resistance [ ? ] single-ended mode vdd=2.7v f=1khz 10% thd+n 1% thd+n 0 8 16 24 32 40 48 56 64 0.00 0.05 0.10 0.15 0.20 output power [w] rl-load resistance [ ? ] single-ended mode vdd=2.7v f=1khz 10% thd+n 1% thd+n 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 0 25 50 75 100 125 150 ambient temperature [c] power dissipation [w] single layer multi layer
fan7031 14 typical application circuits single-ended inputs rin- rin+ sd g0 g1 lin+ lin- rout+ rout- bypass lout+ lout- bias & control se/btl vref gain select vdd gnd 10 f 0.47 f 104 0.47 f 0.47 f 0.47 f 1 f 1,11,20 2 3 9 5 4 8 10 12 18 14 6,15,16 17 7 right channel single ended input 19 vdd vdd vdd left channel single ended input 330 f 330 f 1k ? 100k ? 100k ? 1k ? right output (btl) left output (btl) stereo output 10k ? 10k ? 10k ?
fan7031 15 typical application circuits (continued) differential inputs rin- rin+ lin+ lin- rout+ rout- bypass lout+ lout- bias & control se/btl vref gain select vdd gnd 10 f 0.47 f 104 0.47 f 0.47 f 0.47 f 1 f 1,11,20 2 3 9 5 4 8 10 12 18 14 6,15,16 17 7 right channel differential input 19 vdd vdd left channel differential input 330 f 330 f 1k ? 100k ? 100k ? 1k ? right output (btl) left output (btl) stereo output sd g0 g1 vdd 10k ? 10k ? 10k ?
fan7031 16 functional description the fan7031 is a stereo 2w amplifier capable of deliverin g 1.85w continuous rms power into a 4-ohm load. this device has less than 0.75% thd+n across the entire frequency range at an output power of 1w. a thermally enhanced tssop package is used to allow for maximum dissipation of package heat. gain selection is achieved by driving g0 and g1 inputs according to the table below. gain select pins are activated only when se/btl pin is set to low level. if se/btl pin is high, the amplifier configu- ration is changed as se(single-ended) mode and the ga in of se amplifier is fixed to 4.3db (about 1.64). gain is varied by changing the taps on input resistors, and such change in gain will cause variation in the input impedance. input impedance (zin) is described in the ab ove table. the impedance variation determines amplifier lowest bandwidth. thus, input dc decoupling capacitors must be carefully selected. applications information pcb layout and supply regulation metal trace resistance between the btl output and the pa rasitic resistance of the power supply line both heavily affect the output power. in order to obtain the maximum power depicted in the performance characteristics figures, outputs, power and ground lines need wide metal trace. the parasitic resistance of the power line increases ripple noise and degrades the thd and psrr performance. to reduce such unwanted effect, large capacitor must be connected between v dd pin and gnd pin as close as possible. to improve power supply regulation performance, use a low esr capacitor. power supply bypassing selection of proper power supply bypassing capacitor is critical to obtaining lower noise as well as higher power supply rejection. larger capa citors may help to increase immunity to the supply noise. however, considering eco- nomical design, attaching 10 f electrolytic capacitor or tantalum capacitor with 0.1 f ceramic capacitor as close as possible to the vdd pins are enough to get a good supply noise rejection. selection of input capacitor input capacitor blocks dc signal also lo w frequency input sign al. thus, this capacitor acts as a high pass filter. the -3db frequency of this filter is determined by input capaci tor and input impedance of the amplifier. the frequency is as shown previously, the input impeda nce is changed by selecting gain. co nsidering smallest zin (=15kw), the capacitance which meets f -3db frequency of 20hz is 0.53uf. thus, select ing the capacitance higher than 0.53uf, the lowest frequency of audio signal can be amplified without gain loss. g0 g1 se/btl a v zin 0 0 0 6db 90k ? 0 1 0 10.3db 55k ? 1 0 0 15.6db 30k ? 1 1 0 21.6db 15k ? xx 1 4.3db55k ? f 3db ? 1 2 zin c ?? ---------------------------- - =
fan7031 17 blt mode of operation vs. single ended mode of operation the fan7031 offers both btl (bridge-tied load) and se (single ended) operation. when se/btl pin is low, btl operation is selected. in btl operation, maximum output power is increased 4 times comparing with se operation at the same load, output swing and supply condition because output swing is doubled. thus, btl mode is useful to drive a speaker load. on the other hand, when se/btl pin is high, one amplifier config ured btl driver is turned off and only single amplifier is activated. in this mode, maximum output power is redu ced and the quiescent power consumption is saved about half. thus, se mode is adequa te for head-phone load. the output power of btl and se are expressed as follows respectively: to use the amplifier in se mode, the output dc voltage must be blocked not to increase power consumption. thus, the load is tied to output via output dc blocking capa citor. the capacitor size ca n be chosen using above f- 3db equation. for example, assuming the load impedance is 32w, 249uf capacitor guarantees 20hz signal transmis- sion to the load without gain reduction. shutdown mode the device moves to a shutdown mode when the shutdown pin is at 0v. for normal operation the shutdown pin should be at v dd . this pin should never be left unconnected. p btl vp 2 2rl ? --------------- , = p se vp 2 8rl ? --------------- . =
fan7031 18 mechanical dimensions package dimensions in millimeters 20tssop-ep
fan7031 19 ordering information device package operating temperature fan7031mtf 20tssop-ep -40 c ~ +85 c
fan7031 3/25/04 0.0m 001 stock#dsxxxxxxxx ? 2004 fairchild semiconductor corporation life support policy fairchild?s products are not auth orized for use as critical compon ents in life support devices or systems without the express written approval of the pr esident of fairch ild semiconductor corporation. as used herein: 1. life support devices or syst ems are devices or systems which, (a) are intended for surg ical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. a critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause t he failure of the life support device or system, or to affect its safety or effectiveness. www.fairchildsemi.com disclaimer fairchild semiconductor reserves the right to make changes without further notice to any products herein to improve re liability, function or design. fairchild does not assume any liability arising out of the applic ation or use of any product or circuit described herein; neither does it convey any license under its pat ent rights, nor the rights of others.


▲Up To Search▲   

 
Price & Availability of FAN7031MTFX

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X